If X and Y are random variables, sometimes we need to know the mean and variance of their sum, X + Y, or weighted sum, aX + bY. For instance, total revenue = price1 × vol1+ price2 × vol2.
$$E(aX + bY)=aE(X)+bE(Y)=aμ_X+bμ_Y$$ $$Var(aX+bY)=a^2 Var(X) + b^2 Var(Y) + 2abCov(X,Y)$$ $$Var(aX+bY)=a^2 Var(X) + b^2 Var(Y) + 2abσ_X σ_Y Corr(X,Y)$$If X and Y are independent:
$$Cov(X,Y)= 0$$ $$Var(aX + bY) = a^2 Var(X) + b^2 Var(Y)$$Use the Search Bar to find content on MarketingMind.
In an analytics-driven business environment, this analytics-centred consumer marketing workshop is tailored to the needs of consumer analysts, marketing researchers, brand managers, category managers and seasoned marketing and retailing professionals.
Is marketing education fluffy too?
Marketing simulators impart much needed combat experiences, equipping practitioners with the skills to succeed in the consumer market battleground. They combine theory with practice, linking the classroom with the consumer marketplace.