Regression Analysis — Choice of Variables

The choice of variables is crucial to the validity and utility of a regression model.

The omission of relevant independent variable can severely distort the findings, particularly when the variable relates to a distinct influence, yet coincides (correlates) with some other independent variable.

For example, in Singapore, consumer promotions of some soft drink brands occur mainly during the Hungry Ghost festival. If the festive seasonality is not incorporated into the regression model, the discount price elasticity of these brands is greatly exaggerated as they soak up the impact of the festive season.

The inclusion of irrelevant variables is also a concern. It reduces the model’s parsimony and may also mask or replace the effects of more useful variables.

A separate issue pertains to errors in the measurement of variables, missing data points for instance. Where it is necessary to include the data, analyst make use of a variety of techniques to clean data and incorporate missing information.

Previous     Next

Use the Search Bar to find content on MarketingMind.







Marketing Analytics Workshop

Marketing Analytics Workshop

In an analytics-driven business environment, this analytics-centred consumer marketing workshop is tailored to the needs of consumer analysts, marketing researchers, brand managers, category managers and seasoned marketing and retailing professionals.


What they SHOULD TEACH at Business Schools

What they SHOULD TEACH at Business Schools


Is marketing education fluffy too?


Experiential Learning via Simulators | Best Way to Train Marketers

Experiential Learning via Simulators | Best Way to Train Marketers


Marketing simulators impart much needed combat experiences, equipping practitioners with the skills to succeed in the consumer market battleground. They combine theory with practice, linking the classroom with the consumer marketplace.