# Standard Normal Distribution — Hypothesis Testing

The normal distribution X∼N(0,1), μ = 0 and σ = 1, is called the standard normal distribution, and its distribution function is:

$$f(x)=\frac{e^{-x^2/2}}{\sqrt{2π}}$$

A value from any normal distribution can be transformed into its corresponding value on a standard normal distribution using the following formula:

$$Z =\frac{X - μ}{σ}$$

where Z is the value on the standard normal distribution, X is the value on the original distribution, μ is the mean of the original distribution, and σ is the standard deviation of the original distribution.

$$E(Z)= E\biggl(\frac{X - μ}{σ}\biggr)=\frac{E(X) - μ}{σ}=0$$ $$Var(Z)=Var\biggl(\frac{X - μ}{σ}\biggr)=\frac{Var(X)}{σ^2}=1$$

To computing probabilities for normal distributions, convert to standard value and lookup the distribution function tables for the standard normal distribution:

$$P(X≤b)→P\biggl(Z≤\frac{b - μ}{σ}\biggr)$$

Note: The probabilities may also be obtained using the NORM.DIST function in Excel. The Excel NORM.INV function returns the variable value, given the parameters and the probability.

Previous     Next

Use the Search Bar to find content on MarketingMind.

### Marketing Analytics Workshop

In an analytics-driven business environment, this analytics-centred consumer marketing workshop is tailored to the needs of consumer analysts, marketing researchers, brand managers, category managers and seasoned marketing and retailing professionals.

### Digital Marketing Workshop

Unlock the Power of Digital Marketing: Join us for an immersive online experience designed to empower you with the skills and knowledge needed to excel in the dynamic world of digital marketing. In just three days, you will transform into a proficient digital marketer, equipped to craft and implement successful online strategies.