Regression Analysis — Assumptions

There are a number of underlying assumptions about the dependent and independent variables, and their relationship, which affect the statistical procedures such as LSE and significance tests used for linear regression. These assumptions, listed here, need to be tested at the different stages of the regression process.

Normality: Variables and their combination are assumed to follow the normal distribution.

Linearity is assumed.

Homoscedasticity: Variance of dependent variable should not vary across range of predictor variables.

Residuals (errors, i.e., predicted minus observed values) are assumed to be independent. The prediction errors should be uncorrelated, otherwise it suggests some unexplained, systematic relationship in the dependent variable.


Previous     Next

Use the Search Bar to find content on MarketingMind.







Marketing Analytics Workshop

Marketing Analytics Workshop

In an analytics-driven business environment, this analytics-centred consumer marketing workshop is tailored to the needs of consumer analysts, marketing researchers, brand managers, category managers and seasoned marketing and retailing professionals.


Digital Marketing Workshop

Digital Marketing Workshop

Unlock the Power of Digital Marketing: Join us for an immersive online experience designed to empower you with the skills and knowledge needed to excel in the dynamic world of digital marketing. In just three days, you will transform into a proficient digital marketer, equipped to craft and implement successful online strategies.