Retail analytics using tracking data (retail audit/scan data) essentially involves filtering the data to form one or more outlet groups (refer to Exhibit 29.1). The groups may be defined based on the physical characteristics of the outlets (e.g. location, size, type of outlet, type of facilities etc.) or on the sale and distribution of products.
Outlet grouping serves the purpose of drilling into relevant data. If a particular retail issue is to be evaluated, the groups are configured so that they provide a deeper understand of that issue. For example:
Note: To find content on MarketingMind type the acronym ‘MM’ followed by your query into the search bar. For example, if you enter ‘mm consumer analytics’ into Chrome’s search bar, relevant pages from MarketingMind will appear in Google’s result pages.
In an analytics-driven business environment, this analytics-centred consumer marketing workshop is tailored to the needs of consumer analysts, marketing researchers, brand managers, category managers and seasoned marketing and retailing professionals.
Is marketing education fluffy too?
Marketing simulators impart much needed combat experiences, equipping practitioners with the skills to succeed in the consumer market battleground. They combine theory with practice, linking the classroom with the consumer marketplace.
The Plannogrammer is an experiential learning facility for category managers, trade marketers, and retailers in consumer markets. Ideally suited for hybrid learning programmes, Plannogrammer imparts hands-on training in the planning and evaluation of promotions and merchandising.
It supports a collection of simulation and analysis platforms such as Promotions and Space Planner for optimizing space and promotions, Plannogram for populating shelves and merchandising, a Due To Analysis dashboard that decomposes brand sales into the factors driving sales, and a Promotion Evaluator to evaluate the volume, value and profit impact of promotion plans.